HIGH DOSES RADIATION FACILITY AT NCBJ

Introduction

System setup

- Source: biperiodical accelerating structure with removable conversion plate
- Microwave source: Thales klystron
 TH 2157A supplied by Scandinowa K1 modulator

Superconducting Magnets and Materials 2014 (RESMM'14)

System setup...

Superconducting magnets and Materials 2014 (RESMM'14)

First samples

- Dimension of source: 7mm at 3cm distance.
- System tuned to work with 24kGy/min all samples burned!
- Conclusion: reduce a doserate to 10kGy/min, samples cooled directly by liquid nitrogen

Irradiation in series

- Samples for thermal tests
- Samples for electric isolation quality tests
- Samples for mechanical strength tests

Radiation Effects in Superconducting Magnets and Materials 2014 (RESMM'14)

Irradiation in series

- First package of samples: 5 points 38,4 MGy per point (dose rate 24 kGy/min)
- Second package: 1 point 50 MGy at point (dose rate 22kGy/min)
- Third package of samples: 1 point 50 MGy at point (dose rate 10kGy/min)
- Fourth package of samples: 1 point 50 MGy at point (dose rate 10kGy/min)
- Fifth package of samples: 3 points 38,7 MGy at cental point, 41,8 other points (dose rate 10kGy/min)
- Sixth package of samples: 3 points 38,7 MGy at central point, 41,8 other points (dose rate 10kGy/min)

Radiation Effects in Superconducting Magnets and Materials 2014 (RESMM'14)

Plans for a future

- Upgrade the facility and replace accelerating structure with a new 15MV structure equipped with the X-ray conversion plate, with dose rate more then 10kGy/min
- Rebuild a power supply system to increase PRF up to 300Hz
- Install the new temperature stabilizing system based on GWK temeprature controller

Thank you for your attention

Radiation Effects in Superconducting Magnets and Materials 2014 (RESMM'14